Research

I am specialized in the development and application of statistical learning methods (latent variable models, multivariate analysis, sparse methods and regularization) for ecology and life sciences more particularly around omics data and microbial ecology application.

Research topics and selected associated publications

Some founded projects

PEPR Maths Vives: projet cible AgroStat (2024-2028)

Statistics for the evolution and dynamics of populations and species of agronomic interest
Leaders: Arnaud Estoup (INRAE) and Jean-Michel Marin (Université de Montpellier)
keywords: Interdisciplinary, mathematical and statistical methods, artificial intelligence, machine learning, modelling, massive/heterogeneous data, global change, population biology, agrosystems, agroecology, ecosystems, biological invasions, epidemiology, biodiversity, control, monitoring

EINACT - INRAE Métaprogramme - HOLOFLUX (2025- )

Efficacité, Impact et extension d’une Nouvelle Approche d’ingénierie écologique des CommunauTés microbiennes
Coordinateur : A. Spor, UMR AgroEcologie, INRAE Dijon
Partenaires : UMR AgroEcologie (INRAE Dijon), UR Riverly (INRAE Lyon-Grenoble-Auvergne-Rhône-Alpes), Pathologie Végétale (INRAE PACA)
keywords: Bioremédiation, Impact Ecologique, Multifonctionnalité, Relation Composition-Fonction, Croissance et santé de la plante

Some past funded projects

ANR EcoNet

EcoNet (2019-2023): Advanced statistical modelling of ecological networks (leader: C. Matias)
Partenaires : LPSM (Sorbonne Université), LBBE (Lyon), ISEM (Montpellier), IEES (Paris), Evo-Eco-Paléo (Lille)

ANR project NGB

NGB (2018–2022): Next Generation Biomonitoring of change in ecosystems structure and function (leader: D. Bohan)

DeepPhenomic - INRAE Métaprogramme - Digit-Bio

DeepPhenomic (2022-2024) : Améliorer les performances de sélection chez les bovins laitiers grâce à la sélection phénomique (leaders : P. Croiseau, UMR GABI, Jouy-en-Josas and T. Mary-Huard, UMR GQE, Le Moulon, UMR MIA-PS, Palaiseau)
Partenaires : UMR GABI (Jouy-en-Josas), UMR GQE (Le Moulon), UMR AGAP (Montpellier), Institut Elliance
keywords: sélection phénomiques, sélection génomiques, deep learning, régression fonctionnelle

References

Aubert, J. 2017. “Analyse Statistique de Données Biologiques à Haut Débit.” PhD thesis.
Aubert, J., A. Bar-Hen, J.-J. Daudin, and S.* Robin. 2004. “Determination of the Regulated Genes in Microarray Experiments Using Local FDR.” BMC Bioinformatics 5: np. https://doi.org/10.1186/1471-2105-5-125.
Aubert, Schbath, J.*, and S. Robin. 2021. “Model‐based Biclustering for Overdispersed Count Data with Application in Microbial Ecology.” Methods in Ecology and Evolution 12: 1050–61. https://doi.org/10.1111/2041-210X.13582.
Cao, W., J. Aubert, M.-B. Maillard, F. Boissel, A. Leduc, J.-L. Thomas, S.-M. Deutsch, et al. 2021. “Fine-Tuning of Process Parameters Modulates Specific Metabolic Bacterial Activities and Aroma Compound Production in Semi-Hard Cheese.” Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.1c01634.
Chassé, H., J. Aubert, S. Boulben, Le Corguillé G., E. Corre, P. Cormier, and J. Morales. 2018. “Translatome Analysis at the Egg-to-Embryo Transition in Sea Urchin.” Nucleic Acids Research 46: 4607–21. https://doi.org/10.1093/nar/gky258.
Dillies, M.-A., A. Rau, J. Aubert, C. Hennequet-Antier, M. Jeanmougin, N. Servant, C. Keime, et al. 2012. “A Comprehensive Evaluation of Normalization Methods for Illumina High-Throughput RNA Sequencing Data Analysis.” Briefings in Bioinformatics 14: 671–83. https://doi.org/10.1093/bib/bbs046.
Lecomte, Maxime, Wenfan Cao, Julie Aubert, David James Sherman, Hélène Falentin, Clémence Frioux, and Simon Labarthe. 2024. “Revealing the Dynamics and Mechanisms of Bacterial Interactions in Cheese Production with Metabolic Modelling.” Metab. Eng. 83 (May): 24–38.
Lejal, E., J. Chiquet, J. Aubert, S. Robin, A. Estrada-Peña, O. Rue, C. Midoux, et al. 2021. “Temporal Patterns in Ixodes Ricinus Microbial Communities: An Insight into Tick-Borne Microbe Interactions.” Microbiome 9: 153. https://doi.org/10.1186/s40168-021-01051-8.
Magniette, M.-L., J. Aubert, A. Bar-Hen, S. Elftieh, F. Magniette, J.-P. Renou, and J.-J. Daudin. 2008. “Normalization for Triple-Target Microarray Experiments.” BMC Bioinformatics 9: 216. https://doi.org/10.1186/1471-2105-9-216.
Mary-Huard, T., J. Aubert, N. Mansouri, O. Sandra, and J.-J. Daudin. 2008. “Statistical Methodology for the Analysis of Dye-Switch Microarray Experiments.” BMC Bioinformatics 9: np. https://doi.org/10.1186/1471-2105-9-98.
Romdhane, S., A. Spor, J. Aubert, D. Bru, M.-C. Breuil, S. Hallin, A. Mounier, S. Ouadah, M. Tsiknia, and L. Philippot. 2022. “Unraveling Negative Biotic Interactions Determining Soil Microbial Community Assembly and Functioning.” The International Society of Microbiologial Ecology Journal 16: 296–306. https://doi.org/10.1038/s41396-021-01076-9.
Thieffry, Sylvia, Julie Aubert, Marion Devers-Lamrani, Fabrice Martin-Laurent, Sana Romdhane, Nadine Rouard, Mathieu Siol, and Aymé Spor. 2024. “Engineering Multi-Degrading Bacterial Communities to Bioremediate Soils Contaminated with Pesticides Residues.” J. Hazard. Mater. 471 (134454): 134454.
Wang, Lebarbier, X.*, J. Aubert, and S. Robin. 2019. “Variational Inference for Coupled Hidden Markov Models Applied to the Joint Detection of Copy Number Variations.” The International Journal of Biostatistics 15. https://doi.org/10.1515/ijb-2018-0023.
Washburn, Jacob D, José Ignacio Varela, Alencar Xavier, Qiuyue Chen, David Ertl, Joseph L Gage, James B Holland, et al. 2024. “Global Genotype by Environment Prediction Competition Reveals That Diverse Modeling Strategies Can Deliver Satisfactory Maize Yield Estimates.” Genetics, November.
Zancarini, Anouk, Christine Le Signor, Sébastien Terrat, Julie Aubert, Christophe Salon, Nathalie Munier-Jolain, and Christophe Mougel. 2024. “Medicago Truncatula Genotype Drives the Plant Nutritional Strategy and Its Associated Rhizosphere Bacterial Communities.” New Phytol., November.