Research
I am specialized in the development and application of statistical learning methods (latent variable models, multivariate analysis, sparse methods and regularization) for ecology and life sciences more particularly around omics data and microbial ecology application.
Research topics and selected associated publications
Latent variable models in particular for omics data (see J. Aubert 2017; S. Aubert J.* and Robin 2021; Wang, Aubert, and Robin 2019)
keywords: Latent Block Models, Overdispersed Count Data, Coupled Hidden Markov-ModelApplications in microbial ecology
plant-microbial communities interactions - soil microbial communities - food microbial communities (see Lejal et al. 2021; Romdhane et al. 2022; Thieffry et al. 2024; Lecomte et al. 2024; Zancarini et al. 2024)
keywords: multivariate analysis, count data, co-occurrences network inference, machine learning, metabarcodingStatistical methods for analyzing transcriptomics data (see Dillies et al. 2012; Mary-Huard et al. 2008; Magniette et al. 2008; Chassé et al. 2018; Cao et al. 2021; J. Aubert et al. 2004)
keywords: normalization, false discovery rate control, experimental design, sea-urchin traductome, cheese metatranscriptomeGenexEnvironment prediction (see Washburn et al. 2024)
keywords: machine learning, reproducibility, competition
Some founded projects
PEPR Maths Vives: projet cible AgroStat (2024-2028)
Statistics for the evolution and dynamics of populations and species of agronomic interest
Leaders: Arnaud Estoup (INRAE) and Jean-Michel Marin (Université de Montpellier)
keywords: Interdisciplinary, mathematical and statistical methods, artificial intelligence, machine learning, modelling, massive/heterogeneous data, global change, population biology, agrosystems, agroecology, ecosystems, biological invasions, epidemiology, biodiversity, control, monitoring
EINACT - INRAE Métaprogramme - HOLOFLUX (2025- )
Efficacité, Impact et extension d’une Nouvelle Approche d’ingénierie écologique des CommunauTés microbiennes
Coordinateur : A. Spor, UMR AgroEcologie, INRAE Dijon
Partenaires : UMR AgroEcologie (INRAE Dijon), UR Riverly (INRAE Lyon-Grenoble-Auvergne-Rhône-Alpes), Pathologie Végétale (INRAE PACA)
keywords: Bioremédiation, Impact Ecologique, Multifonctionnalité, Relation Composition-Fonction, Croissance et santé de la plante
Some past funded projects
ANR EcoNet
EcoNet (2019-2023): Advanced statistical modelling of ecological networks (leader: C. Matias)
Partenaires : LPSM (Sorbonne Université), LBBE (Lyon), ISEM (Montpellier), IEES (Paris), Evo-Eco-Paléo (Lille)
ANR project NGB
NGB (2018–2022): Next Generation Biomonitoring of change in ecosystems structure and function (leader: D. Bohan)
DeepPhenomic - INRAE Métaprogramme - Digit-Bio
DeepPhenomic (2022-2024) : Améliorer les performances de sélection chez les bovins laitiers grâce à la sélection phénomique (leaders : P. Croiseau, UMR GABI, Jouy-en-Josas and T. Mary-Huard, UMR GQE, Le Moulon, UMR MIA-PS, Palaiseau)
Partenaires : UMR GABI (Jouy-en-Josas), UMR GQE (Le Moulon), UMR AGAP (Montpellier), Institut Elliance
keywords: sélection phénomiques, sélection génomiques, deep learning, régression fonctionnelle